
Exercises

1-4 Find the area of the shaded region

5-12 Sketch the region enclosed by the given curves. Decide whether to integrate with respect to x or y. Draw a typical approximating rectangle and label its height and width. Then find the area of the region.

5.
$$y = x + 1$$
, $y = 9 - x^2$, $x = -1$, $x = 2$

6.
$$y = \sin x$$
, $y = x$, $x = \pi/2$, $x = \pi$

7.
$$y = (x-2)^2$$
, $y = x$

8.
$$y = x^2 - 2x$$
, $y = x + 4$

9.
$$y = \sqrt{x+3}$$
, $y = (x+3)/2$

10.
$$y = \sin x$$
, $y = 2x/\pi$, $x \ge 0$

11.
$$x = 1 - y^2$$
, $x = y^2 - 1$

12.
$$4x + y^2 = 12$$
, $x = y$

13-28 Sketch the region enclosed by the given curves and find its

13.
$$y = 12 - x^2$$
, $y = x^2 - 6$

14.
$$y = x^2$$
, $y = 4x - x^2$

15.
$$y = \sec^2 x$$
, $y = 8 \cos x$, $-\pi/3 \le x \le \pi/3$

16.
$$y = \cos x$$
, $y = 2 - \cos x$, $0 \le x \le 2\pi$

17.
$$x = 2y^2$$
, $x = 4 + y^2$

18.
$$v = \sqrt{x-1}$$
, $x-v=1$

19.
$$y = \cos \pi x$$
, $y = 4x^2 - 1$

20.
$$x = y^4$$
, $y = \sqrt{2 - x}$, $y = 0$

21.
$$y = \cos x$$
, $y = 1 - 2x/\pi$

22.
$$y = x^3$$
, $y = x$

23.
$$y = \cos x$$
, $y = \sin 2x$, $x = 0$, $x = \pi/2$

24.
$$y = \cos x$$
, $y = 1 - \cos x$, $0 \le x \le \pi$

25.
$$y = \sqrt{x}$$
, $y = \frac{1}{2}x$, $x = 9$

26.
$$y = |x|, y = x^2 - 2$$

27.
$$y = 1/x^2$$
, $y = x$, $y = \frac{1}{8}x$

28.
$$y = \frac{1}{4}x^2$$
, $y = 2x^2$, $x + y = 3$, $x \ge 0$

29-30 Use calculus to find the area of the triangle with the given

31-32 Evaluate the integral and interpret it as the area of a region. Sketch the region.

31.
$$\int_0^{\pi/2} |\sin x - \cos 2x| \, dx$$
 32. $\int_0^4 |\sqrt{x+2} - x| \, dx$

32.
$$\int_{0}^{4} |\sqrt{x+2} - x| dx$$

$\stackrel{\frown}{H}$ 33-36 Use a graph to find approximate x-coordinates of the points of intersection of the given curves. Then find (approximately) the area of the region bounded by the curves.

33.
$$y = x \sin(x^2)$$
, $y = x^4$, $x \ge 0$

34.
$$y = \frac{x}{(x^2 + 1)^2}$$
, $y = x^5 - x$, $x \ge 0$

35.
$$y = 3x^2 - 2x$$
, $y = x^3 - 3x + 4$

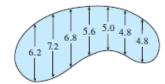
36.
$$y = x^2 \cos(x^3)$$
, $y = x^{10}$

37-40 Graph the region between the curves and use your calculator to compute the area correct to five decimal places.

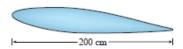
37.
$$y = \frac{2}{1 + x^4}$$
, $y = x^2$ **38.** $y = x^6$, $y = \sqrt{2 - x^4}$

38.
$$v = x^6$$
, $v = \sqrt{2-x}$

39.
$$y = \tan^2 x$$
, $y = \sqrt{x}$

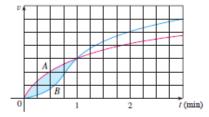

40.
$$y = \cos x$$
, $y = x + 2 \sin^4 x$

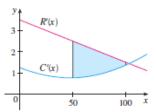
CAS 41. Use a computer algebra system to find the exact area enclosed by the curves $y = x^5 - 6x^3 + 4x$ and y = x.


Midpoint Rule to estimate how much farther Kelly travels than Chris does during the first ten seconds.

t	v_C	v_K	t	v_C	v_K
0	0	0	6	69	80
1	20	22	7	75	86
2	32	37	8	81	93
3	46	52	9	86	98
4	54	61	10	90	102
5	62	71			
	1 2 3 4	0 0 1 20 2 32 3 46 4 54	0 0 0 1 20 22 2 32 37 3 46 52 4 54 61	0 0 0 6 1 20 22 7 2 32 37 8 3 46 52 9 4 54 61 10	0 0 0 6 69 1 20 22 7 75 2 32 37 8 81 3 46 52 9 86 4 54 61 10 90

44. The widths (in meters) of a kidney-shaped swimming pool were measured at 2-meter intervals as indicated in the figure. Use the Midpoint Rule to estimate the area of the pool.


45. A cross-section of an airplane wing is shown. Measurements of the thickness of the wing, in centimeters, at 20-centimeter intervals are 5.8, 20.3, 26.7, 29.0, 27.6, 27.3, 23.8, 20.5, 15.1, 8.7, and 2.8. Use the Midpoint Rule to estimate the area of the wing's cross-section.


46. If the birth rate of a population is $b(t) = 2200 + 52.3t + 0.74t^2$ people per y

 $b(t) = 2200 + 52.3t + 0.74t^2$ people per year and the death rate is d(t) = 1460 + 28.8t people per year, find the area between these curves for $0 \le t \le 10$. What does this area represent?

- Two cars, A and B, start side by side and accelerate from rest.
 The figure shows the graphs of their velocity functions.
 - (a) Which car is ahead after one minute? Explain.
 - (b) What is the meaning of the area of the shaded region?
 - (c) Which car is ahead after two minutes? Explain.
 - (d) Estimate the time at which the cars are again side by side.

48. The figure shows graphs of the marginal revenue function R' and the marginal cost function C' for a manufacturer. [Recall from Section 3.7 that R(x) and C(x) represent the revenue and cost when x units are manufactured. Assume that R and C are measured in thousands of dollars.] What is the meaning of the area of the shaded region? Use the Midpoint Rule to estimate the value of this quantity.

- 49. The curve with equation $y^2 = x^2(x+3)$ is called **Tschirnhausen's cubic**. If you graph this curve you will see that part of the curve forms a loop. Find the area enclosed by the loop.
 - 50. Find the area of the region bounded by the parabola y = x², the tangent line to this parabola at (1, 1), and the x-axis.
 - 51. Find the number b such that the line y = b divides the region bounded by the curves y = x² and y = 4 into two regions with equal area.
 - 52. (a) Find the number a such that the line x = a bisects the area under the curve y = 1/x², 1 ≤ x ≤ 4.
 - (b) Find the number b such that the line y = b bisects the area in part (a).
 - 53. Find the values of c such that the area of the region bounded by the parabolas $y = x^2 c^2$ and $y = c^2 x^2$ is 576.
 - **54.** Suppose that $0 < c < \pi/2$. For what value of c is the area of the region enclosed by the curves $y = \cos x$, $y = \cos(x c)$, and x = 0 equal to the area of the region enclosed by the curves $y = \cos(x c)$, $x = \pi$, and y = 0?

The following exercises are intended only for those who have already covered Chapter 6.

55-57 Sketch the region bounded by the given curves and find the area of the region.

55.
$$y = 1/x$$
, $y = 1/x^2$, $x = 2$

56.
$$y = \sin x$$
, $y = e^x$, $x = 0$, $x = \pi/2$

57.
$$y = \tan x$$
, $y = 2 \sin x$, $-\pi/3 \le x \le \pi/3$

58. For what values of m do the line y = mx and the curve y = x/(x² + 1) enclose a region? Find the area of the region.