3.6 - Reading Assignment

m Graphing with Calculus and Calculators

If you hawva not alraady read Appendix G, you
should do 50 now. In panticular, it axplaing
how to avoid some of the pitfalls of graphing
devicas by choosing approprizta viewing
rectanglas.

The method we used to sketch curves in the preceding section was a culmination of nmch
of our study of differential calculns. The graph was the final object that we produced. In this
section our point of view is completely different. Here we start with a graph produced by
a graphing calenlator or computer and then we refine it. We use caleulus to make sure that
we reveal all the umportant aspects of the enrve. And with the use of graphung devices we
can tackle curves that would be far too complicated to consider without technology. The
theme is the interaction between caleulus and calenlators.

[EZTH] Graph the polynomial f(x) = 2x® + 3x° + 3x° — 2" Use the graphs of
and " to estimate all maxinmm and mininmm points and intervals of concavity.

SOLUTION If we specify a domain but not a range, many graphing devices will deduce a
suitable range from the values computed. Figure 1 shows the plot from one such device
if we specify that —5 = x = 5 Although this viewing rectangle is usefisl for showing
that the asymptotic behavior (or end behavior) is the same as for y = 2x°, it is obviously
hiding some finer detail So we change to the viewing rectangle [ —3, 2] by [—30, 100]
shown m Figure 2.
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From this graph it appears that there is an absolute mininmm vahie of about —15.33
when x == —1.62 (by using the cursor) and [ is decreasing on (—=, —1.62) and increas-
ing on (—1.62, =). Also there appears to be a horizontal tangent at the origin and inflec-
tion points when x = 0 and when x is somewhere between —2 and —1.

Now let’s try to confirm these impressions using caleunlns. We differentiate and get

P8 =126 + 15¢* + 0x — 4x

(x) = 60x* + 60x° + 18x — 4
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When we graph [ in Figure 3 we see that /(%) changes from negative to positive when
x = —1.62; this confirms (by the First Derivative Test) the muninmum valhue that we found
earlier. But, perhaps to our surprise, we also notice that (x) changes from positive to
negative when ¥ = 0 and from negative to pesitive when x == 0.35. This means that f
has a local masinmm at 0 and a local muninmm when x == (.35, but these were hidden

m Figure 2. Indeed, if we now zoom in toward the origin in Figure 4. we see what we
missed before: a local maximum valoe of 0 when x = 0 and a local minimmm value of
about —0.1 when x = 0.35.
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What about concavity and inflection points? From Figures 2 and 4 there appear to
be inflection points when x is a little to the left of —1 and when xis a little to the right
of 0. But 1t’s difficult to determune inflection pomts from the graph of [, so we graph the
second derivative [ in Figure 5. We see that /™ changes from positive to negative when
x = —1.23 and from negative to positive when x = 0.19. So, comrect to tweo decimal
places, [ is concave npward on (—=, —1.23) and (0.19, «) and concave downward on
(—1.23, 0.19). The inflection points are (—1.23, —10.18) and (0.19. —0.03).

We have discovered that no single graph reveals all the important features of this
polynomual But Figures 2 and 4. when taken together, do provide an accurate picture.

|

[ EITT¥] Draw the graph of the function

X +Tx+3
n:.l'] = T
in a viewing rectangle that contains all the important features of the function. Estimate
the maxinmm and minimum values and the mtervals of concavity. Then use calculus to
find these quantities exactly.
SOLUTION Fipure 6. produced by a computer with automatic scaling, is a disaster. Some
graphing calculators wse [—10, 10] by [—10, 10] as the defanlt viewing rectangle, so
let’s try it. We get the graph shown in Figure 7; it's a major improvement.

The y-axis appears to be a vertical asymptote and indeed it is because

e S N
a0 x
Figure 7 also allows us to estimate the x-intercepts: about —0.5 and —6.5. The exact val-

ues are obtained by using the quadratic formula to solve the equation x° + Tx + 3 =0
we get x=(—7 = /37)/2.
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To get a befter lock at horizontal asymptotes, we change to the viewing rectangle
[—20. 20] by [—5. 10] in Figure 8. It appears that y = 1 is the horizontal asymptote and
this is easily confirmed:

3
) =1
P

To estimate the minimmm value we zoom in to the viewing rectangle [—3, 0] by
[—4, 2] in Figure 9. The cursor indicates that the absolute minimnm value is about —3.1
when x = —0.9, and we see that the function decreases on (—=, —0.9} and (0, =) and
increases on (—0.9, 0). The exact vahes are obtained by differentiating:

2+ Tx+3 7
I T lim (1+;+
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et X

7 6 Ix+s§
f=-—5-—5=-
{I X .Ij .1'3

This shows that /(x) > 0 when —% < x< 0 and F(x) < 0 when x < —% and when
x = 0. The exact mininmm value is /{—5) = —F = —3.08.

Figure 9 alzo shows that an inflection point occnrs somewhere between ¥ = —1 and
x = —2 We could estimate it nmch more accurately using the graph of the second deriv-
ative, but in this case it’s just as easy to find exact values. Since

. 14 18 Tx+9)
rO=g+tF=—%
we see that 7"(x) > 0 when x> —3 (x = 0). So fis concave upward on (—-?r, D} and
(0, =) and concave dowmward on {— w, —5'})_ The inflection point is {:—;, —-E].

The analysis using the first two derivatives shows that Figure 8 displays all the major
aspects of the curve. [ |

rlx+ 1P

[ EIITE] Graph the function f(x) = = a-a

SOLUTION Drawing on our experience with a rational function in Example 2, let’s start
by graphing f in the viewing rectangle [— 10, 10] by [— 10, 10]. From Figure 10 we have
the feeling that we are going to have to zoom in fo see some finer detail and also zoom
out to see the larger picture. But. as a guade to mtelligent zoonung, let’s first take a close
look at the expression for /(). Because of the factors (x — 2)* and (x — 4)* in the
denominator, we expect ¥ = 2 and x = 4 to be the vertical asymptotes. Indeed

. dx+1P
N a4

Pl + 1P

= (x— 2Hx— 4

To find the horizontal asymptotes, we divide mumerator and denominator by x%:

X x+ 17 l(1+i)3
dx+1p 2 L X\ x
=2 -4 (=2 -4

(=303

This shows that f{x)—0 as x— *=_s0 the y-axis is a horizontal asymptote.

x X
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The family of functions

fix) = sinlx + sin cx
whare ¢ is a constant, occurs in applications o
frequancy modukation (Ad) synthesis. A sing
wiava is modulated by a wave with a differant
frequancy (sin cx). Tha case whera c = 2 i3
siudied in Exampla 4. Exarcise 19 explores
another spacial case.
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It is also very usefil to consider the behavior of the graph near the y-intercepts using
an analysis like that in Example 11 in Section 3.4. Since x° is positive, /{x) does not
change sipn at 0 and so its graph doesn’t cross the x-axis at 0. But, becanse of the factor
{x + 1), the graph does cross the x-axis at —1 and has a horizontal tangent there. Put-
ting all this nformation together, but without vsing derivatives, we see that the curve has
to look something like the one mn Figure 11,

Now that we kmow what to look for, we zoom in (several times) to produce the
graphs in Figures 12 and 13 and zoom out (several times) to get Figure 14.
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We can read from these graphs that the absolute muninmm 15 abowut —0.02 and cccurs
when x = —20. There is also a local maximmm ==0.00002 when x = —0.3 and a local
minimmm ==211 when x == 2.5. These graphs also show three inflection points near —35,
—5, and —1 and two between —1 and 0. To estimate the inflection points closely we
would need to graph /", but to compute [ by hand is an noreasonable chore. If you
have a computer algebra system, then it's easy to do (see Exercise 13).

We have seen that, for this particular fonction, three graphs (Figures 12, 13, and 14)
are necessary to convey all the useful information. The only way to display all these
featuges of the function on a single graph is to draw it by hand. Despite the exaggera-
tions and distortions, Figure 11 does manape to summmarize the essential nature of the
function ||

IETT T Graph the function f(x) = sin(x + sin 2x). For 0 = x == 7. estimate all
maximmm and mimnmum valoes, intervals of merease and decrease, and inflection points.

SOLUTION We first note that £ is periodic with period 277, Also, £is odd and | fix)| = 1
for all x. So the choice of a viewing rectangle is not a problem for this fonction: We start
with [0, ] by [—1.1, 1.1]. (See Figure 15.) It appears that there are three local maxi-
mum values and two local minimmm values in that window. To confirm this and locate
them more accurately, we calculate that

fx)=cos(x + s 2x - (1 + 2cos2x)

and graph beth f and /" in Fignre 16
Using zoom-in and the First Derivative Test, we find the following approximate
values:

Intervals of increase: (0,086), (1.0, 1.6), (2.1,2.5)
Intervals of decrease: (0.6, 1.0), (1.6,2.1), (2.5, 7
Local maximnm values:  f{0.6) = 1, f16) =1, 25 =1

Local minimum values:  f1.0) = 094, f(2.1) = 094
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The second derivative iz

(8= —(1 + 2 cos 2x)° sin(x + sin 2x) — 4 sin 2xcos(x + sin 2x)

Graphing both £ and (" in Figure 17, we obtain the following approximate values:

Concave upward on: (0.8,1.3), (1.8,2.3)
Concave downward on: (0, 0.8), (1.3, 1.8), (23,7
Inflection points: (0,0). (0.8,097). (1.3,097), (18, 097), (2.3.0.97)
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Having checked that Figure 15 does indeed represent [/ accurately for 0 = x = 7,

we can state that the extended graph in Figure 18 represents [ accurately for
—2g = x =

Our final example is concerned with families of functions. As discussed in Appendix G,
this means that the functions in the family are related to each other by a formula that con-
tains one of more arbitrary constants. Each value of the constant gives rise to a member of

the family and the idea is fo see how the graph of the function changes as the constant
changes.

0 EIILTE How does the graph of fx) = 1/(x* + 2x + ¢) vary as  varies?

SOLUTION The graphs mn Figures 19 and 20 (the special cases ¢ = 2 and ¢ = —2) show
two very different-looking curves. Before drawing any more graphs, let’s see what mem-
bers of this family have in common. Since

lim ——=10

=tz -+ 2y + o0

for any value of ¢, they all have the y-axis as a horizontal asymptote. A vertical asymp-
tote will occur when x° + 2x + ¢ = 0. Solving this quadratic equation, we get
¥=—-1=% 41— ¢. When ¢ > 1, there is no vertical asymptote (as in Figure 19).
When = 1, the graph has a single vertical asymptote ¥ = —1 becanse

1 1
fim — - &
-l x4+ 2y + 1 -1 (x+ 1)

When ¢ < 1, there are two vertical asymptotes: x = —1 * /1 — ¢ (as in Figure 20).
Now we compute the derivative:
2x+ 2

19 = _{_r! + 2x + &
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This shows that F(x = 0 when x = —1 (if ¢ # 1), Mx) = 0 when x < —1, and
Fx) << 0 when x > —1. For ¢ = 1, this means that / increases on (—=, —1)

and decreases on (—1, @) For ¢ = 1. there is an absolute maxinmm value
A-1)=1/{c — 1).Forc < 1, AAi—1) = 1/(c — 1) is a local maximmm vahle and the
intervals of increase and decrease are interrupted at the vertical asymptotes.

Figure 21 15 a “slide show™ displaying five members of the family, all graphed in the
viewing rectangle [—3, 4] by [—2, 2]. As predicted, ¢ = 1 is the value at which a transi-
tion takes place from two vertical asymptotes to one, and then to none. As ¢ increases
from 1, we see that the maximum pomt becomes lower; this 1s explained by the fact that
1/{c — 1) — O as ¢ — = As ¢ decreases from 1, the vertical asymptotes become more
widely separated because the distance between them is 2.,/1 — ¢, which becomes large

A 516 an animation of Figure 71 in as c— — . Again_ the maximum point approaches the s-axis because 1/(c — 1) — 0
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There 15 clearly no inflechion pomt when ¢ = 1. For ¢ = 1 we calculate that

flx) =

2+ 6r+4— o)

x*+ 2x + P

and deduce that inflection points occur when x = —1 % /3{c — 1)}/3. So the inflection
points become more spread out as ¢ increases and this seems plansible from the last two

parts of Figure 21.



