11.4 Exercises

- Suppose Σ a_n and Σ b_n are series with positive terms and Σ b_n is known to be convergent.
 - (a) If $a_n > b_n$ for all n, what can you say about $\sum a_n$? Why?
 - (b) If $a_n < b_n$ for all n, what can you say about $\sum a_n$? Why?
- Suppose Σ a_n and Σ b_n are series with positive terms and Σ b_n is known to be divergent.
 - (a) If $a_n > b_n$ for all n, what can you say about $\sum a_n$? Why?
 - (b) If $a_n < b_n$ for all n, what can you say about $\sum a_n$? Why?
- 3-32 Determine whether the series converges or diverges.

3.
$$\sum_{n=1}^{\infty} \frac{n}{2n^3 + 1}$$

4.
$$\sum_{n=2}^{\infty} \frac{n^3}{n^4 - 1}$$

$$5. \sum_{n=1}^{\infty} \frac{n+1}{n\sqrt{n}}$$

6.
$$\sum_{n=1}^{\infty} \frac{n-1}{n^2 \sqrt{n}}$$

7.
$$\sum_{n=1}^{\infty} \frac{9^n}{3 + 10^n}$$

8.
$$\sum_{n=1}^{\infty} \frac{6^n}{5^n - 1}$$

$$9. \sum_{k=1}^{\infty} \frac{\ln k}{k}$$

10.
$$\sum_{k=1}^{\infty} \frac{k \sin^2 k}{1 + k^3}$$

11.
$$\sum_{k=1}^{\infty} \frac{\sqrt[3]{k}}{\sqrt{k^3 + 4k + 3}}$$

12.
$$\sum_{k=1}^{\infty} \frac{(2k-1)(k^2-1)}{(k+1)(k^2+4)^2}$$

13.
$$\sum_{n=1}^{\infty} \frac{\arctan n}{n^{12}}$$

$$14. \sum_{n=2}^{\infty} \frac{\sqrt{n}}{n-1}$$

15.
$$\sum_{n=1}^{\infty} \frac{4^{n+1}}{3^n - 2}$$

16.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{3n^4+1}}$$

17.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2+1}}$$

18.
$$\sum_{n=1}^{\infty} \frac{1}{2n+3}$$

19.
$$\sum_{n=1}^{\infty} \frac{1+4^n}{1+3^n}$$

20.
$$\sum_{n=1}^{\infty} \frac{n+4^n}{n+6^n}$$

21.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2}}{2n^2+n+1}$$

22.
$$\sum_{n=3}^{\infty} \frac{n+2}{(n+1)^3}$$

23.
$$\sum_{n=1}^{\infty} \frac{5+2n}{(1+n^2)^2}$$

24.
$$\sum_{n=1}^{\infty} \frac{n^2 - 5n}{n^3 + n + 1}$$

25.
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^4+1}}{n^3+n^2}$$

26.
$$\sum_{n=2}^{\infty} \frac{1}{n\sqrt{n^2-1}}$$

27.
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$$

28.
$$\sum_{n=1}^{\infty} \frac{e^{1/n}}{n}$$

29.
$$\sum_{n=1}^{\infty} \frac{1}{n!}$$

30.
$$\sum_{n=1}^{\infty} \frac{n!}{n^n}$$

31.
$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$$

32.
$$\sum_{n=1}^{\infty} \frac{1}{n^{1+1/n}}$$

33-36 Use the sum of the first 10 terms to approximate the sum of the series. Estimate the error.

33.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^4 + 1}}$$

34.
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{n^3}$$

35.
$$\sum_{n=1}^{\infty} 5^{-n} \cos^2 n$$

36.
$$\sum_{n=1}^{\infty} \frac{1}{3^n + 4^n}$$

37. The meaning of the decimal representation of a number $0.d_1d_2d_3...$ (where the digit d_i is one of the numbers 0, 1, 2, ..., 9) is that

$$0.d_1d_2d_3d_4\ldots = \frac{d_1}{10} + \frac{d_2}{10^2} + \frac{d_3}{10^3} + \frac{d_4}{10^4} + \cdots$$

Show that this series always converges.