11.3:

37. (a) Use the sum of the first 10 terms to estimate the sum of the series $\sum_{n=1}^{\infty} 1 / n^{2}$. How good is this estimate?
(b) Improve this estimate using 3 with $n=10$.
(c) Compare your estimate in part (b) with the exact value given in Exercise 34.
(d) Find a value of n that will ensure that the error in the approximation $s \approx s_{n}$ is less than 0.001 .

Background for \#37:
34. Leonhard Euler was able to calculate the exact sum of the p-series with $p=2$:

$$
\zeta(2)=\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

Use this fact to find the sum of each series.
(a) $\sum_{n=2}^{\infty} \frac{1}{n^{2}}$
(b) $\sum_{n=3}^{\infty} \frac{1}{(n+1)^{2}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{(2 n)^{2}}$
39. Estimate $\sum_{n=1}^{\infty}(2 n+1)^{-6}$ correct to five decimal places.

11.4:

Use the sum of the first 10 terms to approximate the sum of the series. Estimate the error.
35. $\sum_{n=1}^{\infty} 5^{-n} \cos ^{2} n$
36. $\sum_{n=1}^{\infty} \frac{1}{3^{n}+4^{n}}$

11.5:

Show that the series is convergent. How many terms of the series do we need to add in order to find the sum to the indicated accuracy?
25. $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{10^{n} n!} \quad(\mid$ error $\mid<0.000005)$

Approximate the sum of the series correct to four decimal places.
27. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n)!}$

