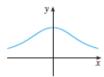
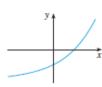
Exercises

- 1. (a) What is a one-to-one function?
 - (b) How can you tell from the graph of a function whether it is one-to-one?
- (a) Suppose f is a one-to-one function with domain A and range B. How is the inverse function f^{-1} defined? What is the domain of f^{-1} ? What is the range of f^{-1} ?
 - (b) If you are given a formula for f, how do you find a formula for f^{-1} ?
 - (c) If you are given the graph of f, how do you find the graph
- 3-16 A function is given by a table of values, a graph, a formula, or a verbal description. Determine whether it is one-to-one.

3.	X	1	2	3	4	5	6
	f(x)	1.5	2.0	3.6	5.3	2.8	2.0

4.	X	1	2	3	4	5	6
	f(x)	1.0	1.9	2.8	3.5	3.1	2.9





- 9. $f(x) = x^2 2x$
- **10.** f(x) = 10 3x
- **11.** q(x) = 1/x
- **12.** g(x) = |x|
- **13.** $h(x) = 1 + \cos x$
- **14.** $h(x) = 1 + \cos x$, $0 \le x \le \pi$
- f(t) is the height of a football t seconds after kickoff.
- **16.** f(t) is your height at age t.
- 17. Assume that f is a one-to-one function.
 - (a) If f(6) = 17, what is $f^{-1}(17)$?
 - (b) If $f^{-1}(3) = 2$, what is f(2)?
- **18.** If $f(x) = x^5 + x^3 + x$, find $f^{-1}(3)$ and $f(f^{-1}(2))$.
- 19. If $h(x) = x + \sqrt{x}$, find $h^{-1}(6)$.

- 20. The graph of f is given.
 - (a) Why is f one-to-one?
 - (b) What are the domain and range of f⁻¹?
 - (c) What is the value of f⁻¹(2)?
 - (d) Estimate the value of f⁻¹(0).

- 21. The formula $C = \frac{5}{9}(F 32)$, where $F \ge -459.67$, expresses the Celsius temperature C as a function of the Fahrenheit temperature F. Find a formula for the inverse function and interpret it. What is the domain of the inverse function?
- 22. In the theory of relativity, the mass of a particle with speed

$$m = f(v) = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

where m_0 is the rest mass of the particle and c is the speed of light in a vacuum. Find the inverse function of f and explain its meaning.

23-28 Find a formula for the inverse of the function.

23.
$$f(x) = 3 - 2x$$

24.
$$f(x) = \frac{4x-1}{2x+3}$$

25.
$$f(x) = 1 + \sqrt{2 + 3x}$$

26.
$$y = x^2 - x$$
, $x \ge \frac{1}{2}$

27.
$$y = \frac{1 - \sqrt{x}}{1 + \sqrt{x}}$$

28.
$$f(x) = 2x^2 - 8x$$
, $x \ge 2$

 \nearrow 29-30 Find an explicit formula for f^{-1} and use it to graph f^{-1} , f, and the line y = x on the same screen. To check your work, see whether the graphs of f and f^{-1} are reflections about the line.

29.
$$f(x) = x^4 + 1$$
, $x \ge 0$

30.
$$f(x) = \sqrt{x^2 + 2x}$$
, $x > 0$

31-32 Use the given graph of f to sketch the graph of f⁻¹.

33. Let $f(x) = \sqrt{1 - x^2}$, $0 \le x \le 1$.

(a) Find f^{-1} . How is it related to f?

(b) Identify the graph of f and explain your answer to part (a).

34. Let $g(x) = \sqrt[3]{1-x^3}$.

(a) Find g^{-1} . How is it related to g?

(b) Graph g. How do you explain your answer to part (a)?

25 2

(a) Show that f is one-to-one.

(b) Use Theorem 7 to find (f⁻¹)'(a).

(c) Calculate f⁻¹(x) and state the domain and range of f⁻¹.

(d) Calculate (f⁻¹)'(a) from the formula in part (c) and check that it agrees with the result of part (b).

(e) Sketch the graphs of f and f^{-1} on the same axes.

35.
$$f(x) = x^3$$
, $a = 8$

36.
$$f(x) = \sqrt{x-2}$$
, $a=2$

37.
$$f(x) = 9 - x^2$$
, $0 \le x \le 3$, $a = 8$

38.
$$f(x) = 1/(x-1)$$
, $x > 1$, $a = 2$

39-42 Find (f-1)'(a).

39. $f(x) = 2x^3 + 3x^2 + 7x + 4$, a = 4

40. $f(x) = x^3 + 3 \sin x + 2 \cos x$, a = 2

41. $f(x) = 3 + x^2 + \tan(\pi x/2)$, -1 < x < 1, a = 3

42. $f(x) = \sqrt{x^3 + x^2 + x + 1}$, a = 2

Suppose f⁻¹ is the inverse function of a differentiable function f and f(4) = 5, f'(4) = ²/₇. Find (f⁻¹)'(5).

44. If g is an increasing function such that g(2) = 8 and g'(2) = 5, calculate (g⁻¹)'(8).

45. If $f(x) = \int_{3}^{x} \sqrt{1+t^3} dt$, find $(f^{-1})'(0)$.

46. Suppose f⁻¹ is the inverse function of a differentiable function f and let G(x) = 1/f⁻¹(x). If f(3) = 2 and f'(3) = ½, find G'(2).

GAS 47. Graph the function f(x) = √x³ + x² + x + 1 and explain why it is one-to-one. Then use a computer algebra system to find an explicit expression for f⁻¹(x). (Your CAS will produce three possible expressions. Explain why two of them are irrelevant in this context.)

48. Show that h(x) = sin x, x ∈ ℝ, is not one-to-one, but its restriction f(x) = sin x, -π/2 ≤ x ≤ π/2, is one-to-one. Compute the derivative of f⁻¹ = sin⁻¹ by the method of Note 2.

49. (a) If we shift a curve to the left, what happens to its reflection about the line y = x? In view of this geometric principle, find an expression for the inverse of q(x) = f(x + c), where f is a one-to-one function.

(b) Find an expression for the inverse of h(x) = f(cx), where c≠ 0.

 (a) If f is a one-to-one, twice differentiable function with inverse function g, show that

$$g''(x) = -\frac{f''(g(x))}{[f'(g(x))]^3}$$

(b) Deduce that if f is increasing and concave upward, then its inverse function is concave downward.