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Using the initial condition y(3) = 5, we obtain the solution

yx) =5+ fe"z ds. =
3

The procedure demonstrated in Example 5 works equally well on separable

equations dy/dx = g(x) f(y) where, say, f(y) possesses an elementary antiderivative
but g(x) does not possess an elementary antiderivative. See Problems 29 and 30 in
Exercises 2.2,

REMARKS

(7) As we have just seen in Example 5, some simple functions do not possess
an antiderivative that is an elémentary function, Integrals of these kinds of
functions are called nonelementary. For example, [3e " dr and [sin x’ dx are
nonelementary integrals. We will run into this concept again in Section 2.3,

(i) In some of the preceding examples we saw that the constant in the one-
parameter family of solutions for a first-order differential equation can be rela-
beled when convenient. Also, it can casily happen that two individuals solving the
same equation correctly arrive at dissimilar expressions for their answers. For
example, by separation of variables we can show that one-parameter families of
solutions for the DE (1 4 y?) dx + (1 + x%) dy = Oare

arctan x + arctan y = ¢ or

As you work your way through the next several sections, bear in mind that fami-
lies of solutions may be equivalent in the sense that one family may be obtained
from another by either relabeling the constant or applying algebra and trigonom-
etry. See Problems 27 and 28 in Exercises 2.2,

|| EXERCISES 2.2

Answers to selected odd-numbered problems begin on page ANS-2.

In Problems 1-22 solve the given differential equation by das _ dQ _
separation of variables. 15. ar kS 16. ar k(Q — 70)
ay _ . dy _ 17 fi£=p_p2 18 div+N=Ntr+2
I.E—SII‘ISX ZIE—(x+1)2 " 'y e
3. dx+ ¥dy=0 4. dy—(y—12dx=0 19Q=x.v+3-r—y—3 dy _xy+t2y—x-2
“dx ay—2x+4y—8" dx xy—3y+x-—3
dy dy
5. x— =4y 6. —+ 2xy? =0
dx dx dy dy
21, = =xVI1 — ¥ 22, (¢ + eF)— =y
dy dy dx dx
A e Ity 8. e“yd— =eV + 2y
* u In Problems 23-28 find an explicit solution of the given
d +12 2y +32 initial-value problem.
9, ylnxZ = (y— 10. 2 - (—y 3 e pro
dy x dx 4x + 5 a5 g
. — = + -
11. cscydx + secxdy =0 . dt 4 D, x( /4=1

12.
13.
14.

sin 3x dx + 2y cos®3x dy = 0
@+ D¥eVdx+ (e + 1) dy=0

x(1+ y)"2dx =y(1 + x») 2 dy

dy y—1
VDY T =2
noe-r @

dy
25, 22 =y —xy, y(—1)=—
i A y(—1) 1
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26.%+ 2y =1, y(0) =3

27. V1 = Ydx — V1 — 2dy =0, y0)=

V3
2
28. (1 +xHdy+x(1 +4y)dx=0, y(1)=0
In Problems 29 and 30 proceed as in Example 5 and find an
explicit solution of the given initial-value problem.
dy  _»

29, 2 =ye ¥, yd) =1
7= = e y4)

30. ay _ yisina?d, y(=2) =1
dx

In Problems 31-34 find an explicit solution of the given
initial-value problem. Determine the exact interval T of defi
nition by analytical methods. Use a graphing utility to plot
the graph of the solution.

Q_2x+l
dx 2y

31. y(=2) = -1

d
32. 2y - 2);: =32 +4x+2, yl)=-2

33. @dx — e dy =10, y(0)=0
34. sinxdx +ydy =0, y0)=1

35. (a) Find a solution of the initial-value problem consist-
ing of the differential equation in Example 3 and
each of the initial-conditions: y(0) = 2, y(0) = —2,
and y(%) = 1.

(b) Find the solution of the differential equation in
Example 4 when In ¢; is used as the constant of
integration on the left-hand side in the solution and
4 In ¢; is replaced by In ¢. Then solve the same
initial-value problems in part (a).

d
36. Find a solution of x—y = y? — y that passes through
X
the indicated points.

@ ©1) ®©) ©G) @213
37. Find a singular solution of Problem 21. Of Problem 22.

38. Show that an implicit solution of
2xsinfydx — (x* + 10)cos ydy = 0

is given by In(x? + 10) + csc y = ¢. Find the constant
solutions, if any, that were lost in the solution of the dif-
ferential equation.

Often a radical change in the form of the solution of a differen-
tial equation corresponds to a very small change in either the
initial condition or the equation itself. In Problems 39-42 fin
an explicit solution of the given initial-value problem. Use a
graphing utility to plot the graph of each solution. Compare
each solution curve in a neighborhood of (0, 1).

d
39. 2= (-1 yoy=1
dx
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40. 2=y - 12, y0) = 1.01
dx
dy

4. L=y - 12 +001, y0)=1
dx
d

2. 2=3-12-001, yoy=1
dx

43. Every autonomous first-orde equation dy/dx = f(»)
is separable. Find explicit solutions y(x), y2(x), va(x),
and y4(x) of the differential equation dy/dx =y — y*
that satisfy, in turn, the initial conditions y,(0) = 2,
¥,(0) = %, y3(0) = —%, and y4(0) = —2. Use a graphing
utility to plot the graphs of each solution. Compare these
graphs with those predicted in Problem 19 of Exercises 2.1.
Give the exact interval of definitio for each solution.

44. (a) The autonomous first-order differential equation
dy/dx=1/(y —3) has no crilical points.
Nevertheless, place 3 on the phase line and obtain
a phase portrait of the equation. Compute d?y/dx?
to determine where solution curves are concave up
and where they are concave down (see Problems
35 and 36 in Exercises 2.1). Use the phase portrait
and concavity to sketch, by hand, some typical
solution curves.

(b) Find explicit solutions y;(x), y2(x), ¥3(x), and ys(x)
of the differential equation in part (a) that satisfy,
in turn, the initial conditions y;(0) = 4, y»(0) = 2,
y3(1) = 2, and ys(—1) = 4. Graph each solution
and compare with your sketches in part (a). Give
the exact interval of definition for each solution.

In Problems 45-50 use a technique of integration or a substi-
tution to find an explicit solution of the given differential
equation or initial-value problem.

45, @_{ _ | . 46, Q B sinVx
dx 1+ sinx dx Vy
dy dy 213
47. (Vx+x)==Vy+y 48. ==y —y
dx dx
dy eV dy xtan™'x
49, —=— y1)=4 50, —=——, ¥0)=3
T T (1) e ¥(0)

Discussion Problems

51. (a) Explain why the interval of definition of the explicit
solution y = ¢,(x) of the initial-value problem in
Example 2 is the open interval (=35, 5).

(b) Can any solution of the differential equation cross
the x-axis? Do you think that x> + y> =1 is an
implicit solution of the initial-value problem
dy/dx = —x/y, y(1) = 0?

52. (a) If a >0, discuss the differences, if any, between
the solutions of the initial-value problems consist-
ing of the differential equation dy/dx = x/y and
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each of the initial conditions y(a) = a, y(a) = —aq,
y(—a) = a,and y(—a) = —a.

(b) Does the initial-value problem dy/dx = x/y,
¥(0) = 0 have a solution?

(c) Solve dy/dx = x/v, y(1) = 2 and give the exact
interval I ot definition of its solution

53. In Problems 43 and 44 we saw that every autonomous
first-order differential equation dy/dx = f(y) s
separable. Does this fact help in the solution of the

dy
initial-value problemd—) = V1 +y*sin?y, y(0) =17
X
Discuss. Sketch, by hand, a plausible solution curve of
the problem.

54. (a) Solve the two initial-value problems:

dy
— = 0)=1
FRiab 0)
and
dy
==yt =aiy
dx 0 il ¥e)

(b) Show that there are more than 1.65 million digits in
the y-coordinate of the point of intersection of the
two solution curves in part (a).

55. Find a function whose square plus the square of its
derivative is 1.

56. (a) The differential equation in Problem 27 is equiva-
lent to the normal form

dy  [1—»*

de N1 -2
in the square region in the xy-planc defined by
|x| < 1,|y| < 1. But the quantity under the radical is
nonnegative also in the regions defined by |x| > 1,
|[y| > 1. Sketch all regions in the xy-plane for

which this differential equation possesses real
solutions.

(b) Solve the DE in part (a) in the regions defined by
|x| > 1,|y| > 1. Then find an implicit and an
explicit solution of the differential equation subject
loy(2) = 2.

Mathematical Model

57. Suspension Bridge In (16) of Section 1.3 we saw that
a mathematical model for the shape of a flexible cable
strung between two vertical supports is

dy _W

= 10
b Ty (10)

where W denotes the portion of the total vertical load
between the points Py and P, shown in Figure 1.3.7. The
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DE (10) is separable under the following conditions that
describe a suspension bridge.

Let us assume that the x- and y-axes are as shown in
Figure 2.2.5—that is, the x-axis runs along the horizon-
tal roadbed, and the y-axis passes through (0, @), which
is the lowest point on one cable over the span of the
bridge, coinciding with the interval [—L/2, L/2]. Tn the
case of a suspension bridge, the usual assumption is that
the vertical load in (10) is only a uniform roadbed dis-
tributed along the horizontal axis. In other words, it is
assumed that the weight of all cables is negligible in
comparison to the weight of the roadbed and that the
weight per unit length of the roadbed (say, pounds per
horizontal foot) is a constant p. Use this information to
set up and solve an appropriate initial-value problem
from which the shape (a curve with equation y = ¢(x))
of each of the two cables in a suspension bridge is
determined. Express your solution of the IVP in terms
of the sag h and span L. See Figure 2.2.5.

= y ; Y
cable
“’\/ // h (sag)
(0, a)
Y/ =T 1] |
I -L/2 142 X
I L (span)

roadbed (load)

FIGURE 2.2.5 Shape of a cable in Problem 57

Computer Lab Assignments

58. (a) Use a CAS and the concept of level curves to
plot representative graphs of members of the
family of solutions of the differential equation
dy ~ Bx+5
dx 3+ 1
of level curves as well as various rectangular
regions definedbya=x=b,c =y =d.

Experiment with different numbers

(b) On separate coordinate axes plot the graphs of the
particular solutions corresponding to the initial
conditions: y(0)=—1; y(0)=2; y(—1)=4
-1 =3,

59. (a) Find an implicit solution of the IVP
QRy+2)dy — (4 + 6x)dx = 0, y(0) = —3.

(b) Use part (a) to find an explicit solution y = ¢(x) of

the IVP.

(c) Consider your answer to part (b) as a function only.
Use a graphing utility or a CAS to graph this func-
tion, and then use the graph to estimate its domain.

(d) With the aid of a root-finding application of a CAS,
determine the approximate largest interval I of
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condition. With the aid of a root-finding application
of a CAS, determine the approximate largest inter-
val I of definition of the solution ¢. [Hinr: First fin
the points on the curve in part (a) where the tangent
60. (a) Use a CAS and the concept of level curves to is vertical.]
plot representative graphs of members of the . »
family of solutions of the differential equation (¢) Repeat part (b) for the initial condition y(0) = —2.
dy  x(1 —x)
dx  y(=2+y)
numbers of level curves as well as various rectan-
gular regions in the xy-plane until your result
resembles Figure 2.2.6.

(b) On separate coordinate axes, plot the graph of the
implicit solution corresponding to the initial condi-
tion y(0) = % Use a colored pencil to mark off that
segment of the graph that corresponds to the solu-
tion curve of a solution ¢ that satisfies the initial

definition of the solution y = ¢(x) in part (b). Use a
graphing utility or a CAS to graph the solution
curve for the IVP on this interval.

Experiment with different

FIGURE 2.2.6 Level curves in Problem 60

2.3  LINEAR EQUATIONS

REVIEW MATERIAL
e Review the definitions of linear DEs in (6) and (7) of Section 1.1

INTRODUCTION We continue our quest for solutions of first-order differential equations by
next examining linear equations. Linear differential equations are an especially “friendly” family
of differential equations, in that, given a linear equation, whether first order or a higher-order kin,
there is always a good possibility that we can find some sort of solution of the equation that we can

examine.

= A Definitio  The form of a linear first-order DE was given in (7) of Sec-
tion 1.1. This form, the case when n = 1 in (6) of that section, is reproduced here for

convenience.

DEFINITION 2.3.1 Linear Equation

A first-order di ferential equation of the form

dy .
a(x) ==+ ag(x)y = g, )]
dx

is said to be a linear equation in the variable y.

= Standard Form By dividing both sides of (1) by the lead coefficient a,(x), we
obtain a more useful form, the standard form, of a linear equation:

dv - POy = fi 5
=t POy = (), )

We seek a solution of (2) on an interval I for which both coefficient functions P and
fare continuous.
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