2.1 SOLUTION CURVES WITHOUT A SOLUTION .
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EXERCISES 2.1

Answers to selected odd-numbered problems begin on page ANS-1.

2.1.1 DIRECTION FIELDS

In Problems 1—4 reproduce the given computer-gencrated
direction field. Then sketch, by hand, an approximate solu-
tion curve that passes through each of the indicated points.

Use different colored pencils for each solution curve.
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FIGURE 2.1.12 Direction field for Problem
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FIGURE 2.1.13 Direction field for Problem
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FIGURE 2.1.14 Dircction field for Problem
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FIGURE 2.1.15 Direction field for Problem

In Problems 512 use computer software to obtain a direc-
tion field for the given differential equation. By hand, sketch
an approximate solution curve passing through cach of the
given points.

5.y =x 6.y =x+y

(@ y(0) =0 (@ y(=2)=2

(b) y(0) = -3 ®) y(1)= -3
7. yQ = —x o dy = &

dx dx y

(@ y(1) =1 (@) y(0)=1

(b) ¥(0) =4 ) y(=2)=~1
9. % =02xr+y 10. % = xe’

(@) y(0) = ; (a) ¥(0) = -2

®) y2) = —1 (b) y(1) =25
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dy y
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(@) y(2) =2 @ y(-3) =2
(b) y(~1) =0 ® ) =0

In Problems 13 and 14 the given figure represents the graph
of f(y) and f(x), respectively. By hand, sketch a direction
field over an appropriate grid for dy/dx = f(y) (Problem 13)
and then for dy/dx = f(x) (Problem 14).

13. f

¥y

FIGURE 2.1.16 Graph for Problem 13

14. f

FIGURE 2.1.17 Graph for Problem 14

15. In parts (a) and (b) sketch isoclines f(x, y) = c (see the
Remarks on page 38) for the given differential equation
using the indicated values of ¢. Construct a direction fiel
over a grid by carefully drawing lineal elements with the
appropriate slope at chosen points on each isocline. In
each case, use this rough direction field to sketch an ap-
proximate solution curve for the IVP consisting of the DE
and the initial condition y(0) = 1.

(a) dy/dx = x + y; ¢ an integer satisfying —5 <c=<35
(b) dy/dx=x2+y2;c=%,c= 1,c=§,c=4

Discussion Problems

16. (a) Consider the direction fiel of the differential equa-
tion dy/dx = x(y — 4)? — 2, but do not use tech-
nology to obtain it. Describe the slopes of the lineal
elements on thelinesx = 0,y = 3,y = 4,andy = 5.

(b) Consider the IVPdy/dx = x(y — 4)% — 2, y(0) = vy,
where yp 4. Can a solution y(x) — « as x — 07
Based on the information in part (a), discuss.

17. Fora first-orde DE dy/dx = f(x,y) a curve in the plane
define by f(x, y) = 0 is called a nullcline of the equa-
tion, since a lineal element at a point on the curve has zero
slope. Use computer software to obtain a direction fiel
over a rectangular grid of points for dy/dx = x? — 2y,
and then superimpose the graph of the nullcline y = § x2
over the direction field. Discuss the behavior of solution
curves in regions of the plane defined by y %xz and by
y > 3 x% Sketch some approximate solution curves. Try
to generalize your observations.

18. (a) Identify the nullclines (see Problem 17) in
Problems 1, 3, and 4. With a colored pencil, circle
any lineal elements in Figures 2.1.12, 2.1.14, and
2.1.15 that you think may be a lineal element at a
point on a nullcline.

(b) What are the nullclines of an autonomous first-orde
DE?

2.1.2 AUTONOMOUS FIRST-ORDER DEs

19. Consider the autonomous first-order differential equa-
tion dy/dx = y — v and the initial condition y(0) = yj.
By hand, sketch the graph of a typical solution y(x)
when yg has the given values.

@ yo>1 MO0 yo I
(0 —1 @) yo<—1

20. Consider the autonomous first-orde differential equation
dy/dx = y* — y* and the initial condition y(0) = y,. By
hand, sketch the graph of a typical solution y(x) when y
has the given values.

(@) yo>1 )0 yo 1
() -1 y 0 d) yo<-—1

yo O

In Problems 21-28 find the critical points and phase portrait
of the given autonomous first-order differential equation.
Classify each critical point as asymptotically stable, unstable,
or semi-stable. By hand, sketch typical solution curves in the
regions in the xy-plane determined by the graphs of the
equilibrium solutions.

dy dy
21, = =y2 — 3y 22, = =y? -}
. y y dx y y
d d
23._)}:();—2)4 24._y=]0+3y_y2
dx dx
d d
25. 2 =ya-y) 262 =32 -4 -y
dx dx
dy dy ye)' = 9))
27. =2 =y + 2 28, —=———
5, -y +2) di &

In Problems 29 and 30 consider the autonomous differential
equation dy/dx = f(y), where the graph of f is given. Use
the graph to locate the critical points of each differential
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equation. Sketch a phase portrait of each differential equa-
tion. By hand, sketch typical solution curves in the subre-
gions in the xy-plane determined by the graphs of the equi-
librium solutions.

29.

30.

FIGURE 2.1.18 Graph for Problem 29

o

FIGURE 2.1.19 Graph for Problem 30

Discussion Problems

31.

32.

33

34.

Consider the autonomous DE dy/dx = (2/m)y — sin y.
Determine the critical points of the equation. Discuss
a way of obtaining a phase portrait of the equation.
Classify the critical points as asymptotically stable,
unstable, or semi-stable.

A critical point ¢ of an autonomous first-order DE is
said to be isolated if there exists some open interval that
contains ¢ but no other critical point. Can there exist an
autonomous DE of the form given in (2) for which
every critical point is nonisolated? Discuss; do not think
profound thoughts.

Suppose that y(x) is a nonconstant solution of the
autonomous equation dy/dx = f(y) and that ¢ is a
critical point of the DE. Discuss: Why can’t the graph
of y(x) cross the graph of the equilibrium solution
y = ¢? Why can’t f(y) change signs in one of the
subregions discussed on page 39? Why can’t y(x) be
oscillatory or have a relative extremum (maximum or
minimum)?

Suppose that y(x) is a solution of the autonomous equa-
tion dy/dx = f(y) and is bounded above and below by
two consecutive critical points ¢; ¢, as in subregion
R, of Figure 2.1.6(b). If f(y) >0 in the region, then
lim, s« y(x) = ¢;. Discuss why there cannot exist a num-
ber L ¢ such that limy—e y(x) = L. As part of your
discussion, consider what happens to y'(x) as x — o,

21

35.

36.

37.
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Using the autonomous equation (2), discuss how it is
possible (o obtain information about the location of
points of inflection of a solution curve

Consider the autonomous DE dy/dx = y — y — 6. Use
your ideas from Problem 35 to find intervals on the
y-axis for which solution curves are concave up and
intervals for which solution curves are concave down.
Discuss why each solution curve of an initial-value
problem of the form dy/dx =y? —y — 6, y(0) = y,,
where —2  yp 3, has a point of inflection with the
same y-coordinate. What is that y-coordinate? Carefully
sketch the solution curve for which y(0) = —1. Repeat
fory(2) = 2.

Suppose the autonomous DE in (2) has no critical
points. Discuss the behavior of the solutions.

Mathematical Models

38.

39.

40.

41.

Population Model The differential equation in Exam-
ple 3 is a well-known population model. Suppose the DE
is changed to

dP

— = P(aP — b),

- Fla )
where @ and b are positive constants. Discuss what
happens to the population P as time f increases.

Population Model Another population model is given
by

dP

— = kP — h,

dr
where h and k are positive constants. For what injtial
values P(0) = P, does this model predict that the popu-
lation will go extinct?

Terminal Velocity In Section 1.3 we saw that the auto-
nomous differential equation

v
m .7 mg — kv,

where k is a positive constant and g is the acceleration
due 10 gravity, is a model for the velocity v of a body of
mass m that is falling under the influenc of gravity.
Because the term —kv represents air tesistance, the
velocity of a body falling from a great height does not in-
crease without bound as time ¢ increases. Use a phase
portrait of the differential equation to fin the limiting, or
terminal, velocity of the body. Explain your reasoning.

Suppose the model in Problem 40 is modified so
that air resistance is proportional to V2, that s,

dv
— = r — k 2'
mo = g v
See Problem 17 in Exercises 1.3. Use a phase portrait
to find the terminal velocity of the body. Explain your
reasoning.
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42. Chemical Reactions When certain kinds of chemicals (b) Consider the case when « = . Use a phase portrait
are combined, the rate at which the new compound is of the differential equation to predict the behavior
formed is modeled by the autonomous differential of X(7) as r— o when X(0) . When X(0) > «.
¢quation (¢) Verify that an explicit solution of the DE in the case

X - B - ), when k=1 and a =8 is X(f) = a — 1/(t + ¢).

dt Find a solution that satisfies X(0) = « /2. Then fin
where k>0 is a constant of proportionality and a solution that satisfies X(0) = 2a. Graph these
B> a > 0. Here X(r) denotes the number of grams of two solutions. Does the behavior of the solutions as
the new compound formed in time . t —> o agree with your answers to part (b)?

(a) Use a phase portrait of the differential equation to
predict the behavior of X(¢) as { — oo,

2.2 SEPARABLE EQUATIONS

REVIEW MATERIAL

¢ Basic integration formulas (See inside front cover)
s Techniques of integration: integration by parts and partial fraction decomposition
¢ See also the Student Resource Manual.

INTRODUCTION We begin our study of how to solve differential equations with the simplest
of all differential equations: first-order equations with separable variables. Because the method in
this section and many techniques for solving differential equations involve integration, you are
urged to refresh your memory on important formulas (such as f[du/u) and techniques (such as
integration by parts) by consulting a calculus text.

= Solution by Integration Consider the first-order differential equation dy/dx =
f(x, ¥). When f does not depend on the variable y, that is, f(x, y) = g(x), the differen-
tial equation

dy

= 1

7 8™ )
can be solved by integration. If g(x) is a continuous function, then integrating both
sides of (1) gives y = [g(x) dx = G(x) + ¢, where G(x) is an antiderivative (indefi
nite integral) of g(x). For example, if dy/dx =1+ ¢**, then its solution is
y=J( + e¥)dxory = x + k™ + .

= A Definitio  Equation (1), as well as its method of solution, is just a special
case when the function fin the normal form dy/dx = f(x, y) can be factored into a
function of x times a function of y.

DEFINITION 2.2.1 Separable Equation

A first-order di ferential equation of the form

dv )
—— g(/\.)/}( ‘]
dx

is said to be separable or to have separable variables.

For example, the equations

d
—y = )sze

dx

d
iy and =2 — y + sinx
dx
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