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on R enables us to say that not only does a solution exist on some interval 7, con-
taining x, but it is the only solution satisfying y(x¢) = y¢. However, Theorem 1.2.1
does not give any indication of the sizes of intervals I and lo; the interval I of
definition need not be as wide as the region R, and the interval I ¢ of existence and
uniqueness may not be as lar ge as 1. The number & > 0 that defines the interval
To: (xo — h, xo + h) could be very small, so it is best to think that the solution y(x)
is unigue in a local sense —that is, a solution defined near the point (xq, vg). Sce
Problem 50 in Exercises 1.2.

REMARKS

(£) The conditions in Theorem 1.2.1 are sufficient but not necessary. This means
that when f(x, y) and 9f/dy are continuous on a rectangular region R, it must
always follow that a solution of (2) exists and is unique whenever (xq, yp) is a
point interior to R. However, if the conditions stated in the hypothesis of
Theorem 1.2.1 do not hold, then anything could happen: Prohlem (2) may still
have a solution and this solution may be unique, or (2) may have several solu-
tions, or it may have no solution at all. A rereading of Example 5 reveals that the
hypotheses of Theorem 1.2.1 do not hold on the line y = 0 for the differential
equation dy/dx = xy'?, so it is not surprising, as we saw in Example 4 of this
section, that there are two solutions defined on a common interval —h < x < h
satisfying y(0) = 0. On the other hand, the hypotheses of Theorem 1.2.1 do
not hold on the line y = 1 for the differential equation dy/dx = |y — 1|.
Nevertheless it can be proved that the solution of the initial-value problem
dy/dx = |y — 1], »(0) = 1, is unique. Can you guess this solution?

(i) You are encouraged to read, think about, work, and then keep in mind
Problem 49 in Exercises 1.2.

(iif) Initial conditions are prescribed at a single point x,. But we are also inter-
ested in solving differential equations that are subject to conditions specifie
on y(x) or its derivative at two different points xq and x;. Conditions such as

=0, ¥5)=0 or ym/2)=0, y'(m)=1

and called boundary conditions. A differential equation together with bound-
ary conditions is called a boundary-value problem (BVP). For example,

Y+ Aay=0 y0)=0, y(m)=0

is a boundary-value problem. See Problems 3944 in Exercises 1.2.

When we start to solve differential equations in Chapter 2 we will solve
only first-order equations and first-order initial-value problems, The mathe-
matical description of many problems in science and engineering involve
second-order IVPs or two-point BVPs. We will examine some of these prob-
lems in Chapters 4 and S.

Answers to selected odd-numbered problems begin on page ANS-1.

EXERCISES 1.2

solution of the first-order IVP consisting of this differential

In Problems 1 and 2, v = 1 /(1 + cje™?) is a one-parameter . . o . .
¥ /( i ) o equation and the given initial condition. Give the largest

family of solutions of the first-order DE y' =y — y2. Find a

solution of the first-order IVP consisting of this differential
equation and the given initial condition.
L y(0) = —3 2.y(-D=2

In Problems 3--6, y = 1/(x? + ¢) is a one-parameter family
of solutions of the first-order DE y' + 2xy? = 0. Find a

interval 7 over which the solution is defined

4. y(-2) =14
6. y(3) = -4

In Problems 7-10, x = ¢; cos ¢ + ¢; sin ¢ is a two-parameter
family of solutions of the second-order DE x” + x = 0. Find

3.92) =14
5 y(0) =1
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a solution of the second-order [VP consisting of this differ-
ential equation and the given initial conditions.

7. x(0)=-1, £'(0)=38

8. x(m/2)=0, xX(w/2)=1

9. x(m/6) =3, x'(m/6)=0

10. x(7/4) = V2, x'(m/4)=2V2
In Problems 11-14, y = ¢je™ + ¢2¢™¥ is a two-parameter
family of solutions of the second-order DE y” — y = 0. Find

a solution of the second-order IVP consisting of this differ-
ential equation and the given initial conditions.

1.y =1, y'(©0) =2
12. y(1)=0, y()=e
13, y(=1)=5, y(~1)=—5
14. y(@) =0, »(©0)=0

In Problems 15 and 16 determine by inspection at least two
solutions of the given first-order IV .

15. y' =3y*3, y(0)=0
16. xy' =2y, y(0)=0

In Problems 17-24 determine a region of the xy-plane for
which the given differential equation would have a unique
solution whose graph passes through a point (xo, yo) in the
region.

17. = = y¥3 18. — = Vxy
dx Y dx e
dy dy
19, x— = 20, = —y=
xdx B dx e

2L (4 — yhy =42
23. (xz W yz)y' . y2

22, (1 +ydy =#?
2. (y—x)y' =y+x

In Problems 25-28 determine whether Theorem 1.2.1 guar-
antees that the differential equation y' = V32 — 9 pos-
sesses a unique solution through the given point.

25. (1,4)
27. (2, -3)

26. (5,3)
28. (-1, 1)

29. (a) By inspection find a one-parameter family of solu-
tions of the differential equation xy’ = y. Verify that
each member of the family is a solution of the
initial-value problem xy' = y, y(0) = 0.

(b) Explain part (a) by determining a region R in the
xy-plane for which the differential equation xy’ =y
would have a unique solution through a point (xg, yg)
inR
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(¢) Verify that the piecewise-defined functio

_J0, x<0
Y x, x=90

satisfies the condition y(0) = 0, Determine whether
this function is also a solution of the initial-value
problem in part (a).

30. (a) Verify thaty = tan (x + ¢) is a one-parameter family
of solutions of the differential equation y' = 1 + y2,
(b) Since f(x, y) = 1 + y? and 9f/dy = 2y are continu-
ous everywhere, the region R in Theorem 1.2.1 can
be taken to be the entire xy-plane. Use the family of
solutions in part (a) to find an explicit solution of
the first-order initial-value problem y' =1 + y2,
y(0) = 0. Even though xo =0 is in the interval
(—2, 2), explain why the solution is not defined on
this interval.

(¢) Determine the largest interval [ of definition for the
solution of the initial-value problem in part (b).

31. (a) Verify that y = —1/(x + ¢) is a one-parameter
family of solutions of the differential equation
y =5y
(b) Since f(x, y) = y* and 9f/dy = 2y are continuous
everywhere, the region R in Theorem 1.2.1 can be
taken to be the entire xy-plane. Find a solution from
the family in part (a) that satisfies y(0) = 1. Then
find a solution from the family in part (a) that
satisfies y(0) = —1. Determine the largest interval 7
of definition for the solution of each initial-value
problem,

(c

—

Determine the largest interval I of definition for the
solution of the first-order initial-value problem
y' =2, y(0) = 0. [Hint: The solution is not a mem-
ber of the family of solutions in part (a).]

32, (a) Show that a solution from the family in part (a)
of Problem 31 that satisfies y' = y?, y(1) = 1, is
y=1/2 - x.

(b) Then show that a solution from the family in part (a)
of Problem 31 that satisfies y' = y?, y(3) = —1, is
y=1/2 — x).

(¢) Are the solutions in parts (a) and (b) the same?

33. (a) Verify that 3x?> — y2 = ¢ is a one-parameter fam-
ily of solutions of the differential equation
ydy/dx = 3x.

(b) By hand, sketch the graph of the implicit solution
3x? — y? = 3. Find all explicit solutions y = ¢(x) of
the DE in part (a) defined by this relation. Give the
interval / of definition of each explicit solution

(c) The point (—2, 3) is on the graph of 3x* — y2 = 3,
but which of the explicit solutions in part (b) satis-
fies y(—2) = 37

34, (a) Use the family of solutions in part (a) of Problem 33
to find an implicit solution of the initial-value
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problem y dy/dx = 3x, y(2) = —4. Then, by hand,
sketch the graph of the explicit solution of this
problem and give its interval I of definition

(b) Are there any explicit solutions of y dy/dx = 3x that
pass through the origin?

In Problems 35-38 the graph of a member of a family
of solutions of a second-order differential equation
d*y/dx* = f(x,y,y') is given. Match the solution curve with
at least one pair of the following initial conditions.

@ yH=1, y(1=-2

(b) y(=1)=0, y(-1)=-4

©y»)=1, y1)=2

@ y©0)y=-1, Y =2

(e y0=-1, y(0)=0

®) y©0)= -4, y'(0)=-2

35. Y

FIGURE 1.2.7 Graph for Problem 35

36. y
5—-
1 ge—
\I\I | './.' p—t—t— I‘T
\,_// 5 &
5+

FIGURE 1.2.8 Graph for Problem 36
37. ¥

FIGURE 1.2.9 Graph for Problem 37
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38. y

FIGURE 1.2.10 Graph for Problem 38

In Problems 39-44, y = ¢;cos2x + ¢, sin2x is a two-
parameter family of solutions of the second-order DE
y" + 4y = 0. If possible, find a solution of the differential
equation that satisfies the given side conditions. The condi-
tions specified at two different points are called boundary
conditions.

39. y(0) = 0, y(m/4) = 3
41, y'(0) = 0,y'(7/6) = 0
43. (0) = 0, y(mr) = 2

40. y(0) = 0,y(m) =0
42. y(0) = Ly'(m) =5
4.y (m/2)=1,y'"(m) =0

Discussion Problems

In Problems 45 and 46 use Problem 51 in Exercises 1.1 and
(2) and (3) of this section.

45, Find a function y = f(x) whose graph at each point (x, )
has the slope given by 8¢?* + 6x and has the
y-intercept (0, 9).

46. Find a function y = f(x) whose second derivative is
y"=12x — 2 at each point (x, y) on its graph and
y = —x + 5 is tangent to the graph at the point corre-
sponding to x = 1.

47. Consider the initial-value problem y’ = x — 2y,
y(0) = 1. Determine which of the two curves shown
in Figure 1.2.11 is the only plausible solution curve.
Explain your reasoning.

FIGURE 1.2.11 Graphs for Problem 47

48. Determine a plausible value of xo for which the
graph of the solution of the initial-value problem
y' + 2y = 3x — 6, y(xo) = 0 is tangent to the x-axis at
(o, 0). Explain your reasoning.
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49.

50.

° CHAPTER 1 INTRODUCTION TO DIFFERENTIAL EQUATIONS

Suppose that the first-order differential equation
dy/dx = f(x, y) possesses a one-parameter family of
solutions and that f(x, y) satisfies the hypotheses of
Theorem 1.2.1 in some rectangular region R of the
xy-plane. Explain why two different solution curves
cannot intersect or be tangent to each other at a point
(.\’0, y()) inkR,

The functions y(x) = [zx%, —0 < x < w0 and
0, x <0
o) = {,]—6)(4, x=0

have the same domain but are clearly different. See
Figures 1.2,12(a) and 1.2.12(b), respectively. Show that
both functions are solutions of the initial-value problem
dy/dx = xy"?, y(2)=1 on the interval (—o, o).
Resolve the apparent contradiction between this fact
and the last sentence in Example 5.

(a) (b)
FIGURE 1.2.12 Two solutions of the IVP in Problem 50

Mathematical Model

51. Population Growth Beginning in the next section

we will see that differential equations can be used to
describe or model many different physical systems. In
this problem suppose that a model of the growing popu-
lation of a small community is given by the initial-value
problem

Z—f = 0.15P(r) + 20, P(0) = 100,
where P is the number of individuals in the community
and time 7 is measured in years, How fast—that is, at
what rate—is the population increasing at t = 0? How
fast is the population increasing when the population
is 5007

1.3 DIFFERENTIAL EQUATIONS AS MATHEMATICAL MODELS

REVIEW MATERIAL

¢ Units of measurement for weight, mass, and density

¢ Newton’s second law of motion
o Hooke's law

¢ Kirchhoff’s laws

e Archimedes’ principle

INTRODUCTION In this section we introduce the notion of a differential equation as a
mathematical model and discuss some specific models in biology, chemistry, and physics. Once we
have studied some methods for solving DEs in Chapters 2 and 4, we return to, and solve, some of

these models in Chapters 3 and 5.

= Mathematical Models It is often desirable to describe the behavior of some
real-life system or phenomenon, whether physical, sociological, or even economic,
in mathematical terms. The mathematical description of a system of phenomenon is
called a mathematical model and is constructed with certain goals in mind. For ex-
ample, we may wish to understand the mechanisms of a certain ecosystem by study-
ing the growth of animal populations in that system, or we may wish to date fossils
by analyzing the decay of a radioactive substance, either in the fossil or in the stra-
tum in which it was discovered.
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