
16.3 Exercises

The figure shows a curve C and a contour map of a function f
whose gradient is continuous. Find ∫_C ∇f · dr.

 A table of values of a function f with continuous gradient is given. Find ∫_C ∇f · dr, where C has parametric equations

$$x = t^2 + 1$$
 $y = t^3 + t$ $0 \le t \le 1$

x	0	1	2
0	1	6	4
1	3	5	7
2	8	2	9

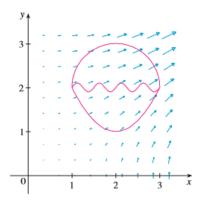
3–10 Determine whether or not **F** is a conservative vector field. If it is, find a function f such that $\mathbf{F} = \nabla f$.

3.
$$\mathbf{F}(x, y) = (2x - 3y)\mathbf{i} + (-3x + 4y - 8)\mathbf{j}$$

4.
$$\mathbf{F}(x, y) = e^x \sin y \, \mathbf{i} + e^x \cos y \, \mathbf{j}$$

5.
$$\mathbf{F}(x, y) = e^x \cos y \, \mathbf{i} + e^x \sin y \, \mathbf{j}$$

6.
$$\mathbf{F}(x, y) = (3x^2 - 2y^2)\mathbf{i} + (4xy + 3)\mathbf{j}$$


7.
$$\mathbf{F}(x, y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$$

8.
$$\mathbf{F}(x, y) = (2xy + y^{-2})\mathbf{i} + (x^2 - 2xy^{-3})\mathbf{j}, y > 0$$

9.
$$\mathbf{F}(x, y) = (\ln y + 2xy^3)\mathbf{i} + (3x^2y^2 + x/y)\mathbf{j}$$

10.
$$\mathbf{F}(x, y) = (xy \cosh xy + \sinh xy) \mathbf{i} + (x^2 \cosh xy) \mathbf{j}$$

- 11. The figure shows the vector field $\mathbf{F}(x, y) = \langle 2xy, x^2 \rangle$ and three curves that start at (1, 2) and end at (3, 2).
 - (a) Explain why $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ has the same value for all three curves.
 - (b) What is this common value?

12–18 (a) Find a function f such that $\mathbf{F} = \nabla f$ and (b) use part (a) to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ along the given curve C.

12.
$$\mathbf{F}(x, y) = x^2 \mathbf{i} + y^2 \mathbf{j}$$
,
 C is the arc of the parabola $y = 2x^2$ from $(-1, 2)$ to $(2, 8)$

13.
$$\mathbf{F}(x, y) = xy^2 \mathbf{i} + x^2 y \mathbf{j},$$

 $C: \mathbf{r}(t) = \left\langle t + \sin \frac{1}{2} \pi t, t + \cos \frac{1}{2} \pi t \right\rangle, \quad 0 \le t \le 1$

14.
$$\mathbf{F}(x, y) = (1 + xy)e^{xy}\mathbf{i} + x^2e^{xy}\mathbf{j},$$

 $C: \mathbf{r}(t) = \cos t \,\mathbf{i} + 2\sin t \,\mathbf{j}, \quad 0 \le t \le \pi/2$

15.
$$\mathbf{F}(x, y, z) = yz \, \mathbf{i} + xz \, \mathbf{j} + (xy + 2z) \, \mathbf{k}$$
,
 C is the line segment from $(1, 0, -2)$ to $(4, 6, 3)$

- **16.** $\mathbf{F}(x, y, z) = (y^2z + 2xz^2)\mathbf{i} + 2xyz\mathbf{j} + (xy^2 + 2x^2z)\mathbf{k}$, C: $x = \sqrt{t}$, y = t + 1, $z = t^2$, $0 \le t \le 1$
- 17. $\mathbf{F}(x, y, z) = yze^{xz}\mathbf{i} + e^{xz}\mathbf{j} + xye^{xz}\mathbf{k},$ $C: \mathbf{r}(t) = (t^2 + 1)\mathbf{i} + (t^2 1)\mathbf{j} + (t^2 2t)\mathbf{k}, \quad 0 \le t \le 2$
- **18.** $\mathbf{F}(x, y, z) = \sin y \, \mathbf{i} + (x \cos y + \cos z) \, \mathbf{j} y \sin z \, \mathbf{k}$ C: $\mathbf{r}(t) = \sin t \, \mathbf{i} + t \, \mathbf{j} + 2t \, \mathbf{k}, \quad 0 \le t \le \pi/2$
- 19-20 Show that the line integral is independent of path and evaluate the integral.
- **19.** $\int_C 2xe^{-y} dx + (2y x^2e^{-y}) dy$, C is any path from (1, 0) to (2, 1)
- **20.** $\int_C \sin y \, dx + (x \cos y \sin y) \, dy$, C is any path from (2, 0) to $(1, \pi)$
- 21. Suppose you're asked to determine the curve that requires the least work for a force field F to move a particle from one point to another point. You decide to check first whether F is conservative, and indeed it turns out that it is. How would you reply to the request?
- 22. Suppose an experiment determines that the amount of work required for a force field F to move a particle from the point (1, 2) to the point (5, −3) along a curve C₁ is 1.2 J and the work done by F in moving the particle along another curve C_2 between the same two points is 1.4 J. What can you say about F? Why?
- 23-24 Find the work done by the force field F in moving an object from P to Q.
- **23.** $\mathbf{F}(x, y) = 2y^{3/2}\mathbf{i} + 3x\sqrt{y}\mathbf{j}$; P(1, 1), Q(2, 4)
- **24.** $\mathbf{F}(x, y) = e^{-y} \mathbf{i} x e^{-y} \mathbf{j}$; P(0, 1), Q(2, 0)

- **28.** Let $\mathbf{F} = \nabla f$, where $f(x, y) = \sin(x 2y)$. Find curves C_1 and C2 that are not closed and satisfy the equation.
 - (a) $\int_{a} \mathbf{F} \cdot d\mathbf{r} = 0$
- (b) $\int_C \mathbf{F} \cdot d\mathbf{r} = 1$
- **29.** Show that if the vector field $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ is conservative and P, Q, R have continuous first-order partial derivatives, then

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial x}$$

$$\frac{\partial P}{\partial r} = \frac{\partial R}{\partial r}$$

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$$
 $\frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}$ $\frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}$

- 30. Use Exercise 29 to show that the line integral $\int_C y \, dx + x \, dy + xyz \, dz$ is not independent of path.
- 31-34 Determine whether or not the given set is (a) open,
- (b) connected, and (c) simply-connected.
- **31.** $\{(x, y) \mid 0 < y < 3\}$
- **32.** $\{(x,y) \mid 1 < |x| < 2\}$
- **33.** $\{(x,y) \mid 1 \le x^2 + y^2 \le 4, y \ge 0\}$
- **34.** $\{(x,y) \mid (x,y) \neq (2,3)\}$
- **35.** Let $\mathbf{F}(x, y) = \frac{-y \, \mathbf{i} + x \, \mathbf{j}}{x^2 + y^2}$.
 - (a) Show that $\partial P/\partial y = \partial Q/\partial x$.
 - (b) Show that ∫_c F · dr is not independent of path. [Hint: Compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ and $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C_1 and C2 are the upper and lower halves of the circle $x^{2} + y^{2} = 1$ from (1, 0) to (-1, 0).] Does this contradict Theorem 6?
- 36. (a) Suppose that F is an inverse square force field, that is,

$$\mathbf{F}(\mathbf{r}) = \frac{c \, \mathbf{r}}{|\mathbf{r}|^3}$$

for some constant c, where $\mathbf{r} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k}$. Find the work done by F in moving an object from a point P_1 along a nath to a noint Po in terms of the distances do and