16.2 Exercises

1-16 Evaluate the line integral, where C is the given curve.

1.
$$\int_C y^3 ds$$
, $C: x = t^3$, $y = t$, $0 \le t \le 2$

2.
$$\int_C xy \, ds$$
, $C: x = t^2$, $y = 2t$, $0 \le t \le 1$

3.
$$\int_C xy^4 ds$$
, C is the right half of the circle $x^2 + y^2 = 16$

4.
$$\int_C x \sin y \, ds$$
, C is the line segment from (0, 3) to (4, 6)

5.
$$\int_C (x^2y^3 - \sqrt{x}) dy$$
,
 C is the arc of the curve $y = \sqrt{x}$ from (1, 1) to (4, 2)

6.
$$\int_C e^x dx$$
,
C is the arc of the curve $x = y^3$ from $(-1, -1)$ to $(1, 1)$

7.
$$\int_C (x + 2y) dx + x^2 dy$$
, C consists of line segments from (0, 0) to (2, 1) and from (2, 1) to (3, 0)

8.
$$\int_C x^2 dx + y^2 dy$$
, C consists of the arc of the circle $x^2 + y^2 = 4$ from (2, 0) to (0, 2) followed by the line segment from (0, 2) to (4, 3)

9.
$$\int_C xyz \, ds$$
,
 $C: x = 2 \sin t$, $y = t$, $z = -2 \cos t$, $0 \le t \le \pi$

10.
$$\int_C xyz^2 ds$$
,
 C is the line segment from $(-1, 5, 0)$ to $(1, 6, 4)$

11.
$$\int_C xe^{yz} ds$$
,
 C is the line segment from (0, 0, 0) to (1, 2, 3)

12.
$$\int_C (x^2 + y^2 + z^2) ds$$
,
 $C: x = t, \ y = \cos 2t, \ z = \sin 2t, \ 0 \le t \le 2\pi$

13.
$$\int_C xye^{yz} dy$$
, $C: x = t$, $y = t^2$, $z = t^3$, $0 \le t \le 1$

14.
$$\int_C y \, dx + z \, dy + x \, dz$$
,
 $C: x = \sqrt{t}, \ y = t, \ z = t^2, \ 1 \le t \le 4$

15.
$$\int_C z^2 dx + x^2 dy + y^2 dz$$
, C is the line segment from (1, 0, 0) to (4, 1, 2)

16.
$$\int_C (y+z) dx + (x+z) dy + (x+y) dz$$
, C consists of line segments from $(0, 0, 0)$ to $(1, 0, 1)$ and from $(1, 0, 1)$ to $(0, 1, 2)$

- 17. Let F be the vector field shown in the figure.
 - (a) If C₁ is the vertical line segment from (-3, -3) to (-3, 3), determine whether ∫_C F · dr is positive, negative, or zero.
 - (b) If C₂ is the counterclockwise-oriented circle with radius 3 and center the origin, determine whether ∫_{C₂} F · dr is positive, negative, or zero.

18. The figure shows a vector field F and two curves C₁ and C₂. Are the line integrals of F over C₁ and C₂ positive, negative, or zero? Explain.

19–22 Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is given by the vector function $\mathbf{r}(t)$.

19.
$$\mathbf{F}(x, y) = xy \, \mathbf{i} + 3y^2 \, \mathbf{j},$$

 $\mathbf{r}(t) = 11t^4 \, \mathbf{i} + t^3 \, \mathbf{j}, \quad 0 \le t \le 1$

20.
$$\mathbf{F}(x, y, z) = (x + y)\mathbf{i} + (y - z)\mathbf{j} + z^2\mathbf{k},$$

 $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j} + t^2\mathbf{k}, \quad 0 \le t \le 1$

21.
$$\mathbf{F}(x, y, z) = \sin x \mathbf{i} + \cos y \mathbf{j} + xz \mathbf{k},$$

 $\mathbf{r}(t) = t^3 \mathbf{i} - t^2 \mathbf{j} + t \mathbf{k}, \quad 0 \le t \le 1$

22.
$$\mathbf{F}(x, y, z) = x \mathbf{i} + y \mathbf{j} + xy \mathbf{k}$$
,
 $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k}$, $0 \le t \le \pi$

23-26 Use a calculator or CAS to evaluate the line integral correct to four decimal places.

23.
$$\int_C \mathbf{F} \cdot d\mathbf{r}$$
, where $\mathbf{F}(x, y) = xy \mathbf{i} + \sin y \mathbf{j}$ and $\mathbf{r}(t) = e^t \mathbf{i} + e^{-t^2} \mathbf{j}$, $1 \le t \le 2$

- 24. $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = y \sin z \, \mathbf{i} + z \sin x \, \mathbf{j} + x \sin y \, \mathbf{k}$ and $\mathbf{r}(t) = \cos t \, \mathbf{i} + \sin t \, \mathbf{j} + \sin 5t \, \mathbf{k}$, $0 \le t \le \pi$
- **25.** $\int_C x \sin(y+z) ds$, where C has parametric equations $x=t^2$, $y=t^3$, $z=t^4$, $0 \le t \le 5$
- **26.** $\int_C z e^{-xy} ds$, where C has parametric equations x = t, $y = t^2$, $z = e^{-t}$, $0 \le t \le 1$
- CAS 27-28 Use a graph of the vector field F and the curve C to guess whether the line integral of F over C is positive, negative, or zero. Then evaluate the line integral.
 - 27. F(x, y) = (x y) i + xy j,
 C is the arc of the circle x² + y² = 4 traversed counterclockwise from (2, 0) to (0, -2)
 - **28.** $\mathbf{F}(x, y) = \frac{x}{\sqrt{x^2 + y^2}} \mathbf{i} + \frac{y}{\sqrt{x^2 + y^2}} \mathbf{j},$ *C* is the parabola $y = 1 + x^2$ from (-1, 2) to (1, 2)
 - **29.** (a) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x,y) = e^{x-1}\mathbf{i} + xy\mathbf{j}$ and C is given by $\mathbf{r}(t) = t^2\mathbf{i} + t^3\mathbf{j}$, $0 \le t \le 1$.
- (b) Illustrate part (a) by using a graphing calculator or computer to graph C and the vectors from the vector field corresponding to t = 0, 1/√2, and 1 (as in Figure 13).
 - **30.** (a) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = x \mathbf{i} z \mathbf{j} + y \mathbf{k}$ and C is given by $\mathbf{r}(t) = 2t \mathbf{i} + 3t \mathbf{j} t^2 \mathbf{k}, -1 \le t \le 1$.
- (b) Illustrate part (a) by using a computer to graph C and the vectors from the vector field corresponding to t = ±1 and ±½ (as in Figure 13).
- CAS 31. Find the exact value of $\int_C x^3 y^2 z \, ds$, where C is the curve with parametric equations $x = e^{-t} \cos 4t$, $y = e^{-t} \sin 4t$, $z = e^{-t}$, $0 \le t \le 2\pi$.

$$0 \le t \le 2\pi$$
.

- **32.** (a) Find the work done by the force field $\mathbf{F}(x, y) = x^2 \mathbf{i} + xy \mathbf{j}$ on a particle that moves once around the circle $x^2 + y^2 = 4$ oriented in the counter-clockwise direction.
- (b) Use a computer algebra system to graph the force field and circle on the same screen. Use the graph to explain your answer to part (a).
- **33.** A thin wire is bent into the shape of a semicircle $x^2 + y^2 = 4$, $x \ge 0$. If the linear density is a constant k, find the mass and center of mass of the wire.
- **34.** A thin wire has the shape of the first-quadrant part of the circle with center the origin and radius a. If the density function is $\rho(x, y) = kxy$, find the mass and center of mass of the wire.
- 35. (a) Write the formulas similar to Equations 4 for the center of mass (x̄, ȳ, z̄) of a thin wire in the shape of a space curve C if the wire has density function ρ(x, y, z).