Exercises

1-4 A region R is shown. Decide whether to use polar coordinates or rectangular coordinates and write $\iint_{\mathbb{R}} f(x, y) dA$ as an iterated integral, where f is an arbitrary continuous function on R.

5-6 Sketch the region whose area is given by the integral and evaluate the integral.

4.

5.
$$\int_{\pi/4}^{3\pi/4} \int_{1}^{2} r \, dr \, d\theta$$

6.
$$\int_{\pi/2}^{\pi} \int_{0}^{2\sin\theta} r \, dr \, d\theta$$

7-14 Evaluate the given integral by changing to polar coordinates.

- 7. $\iint_D x^2 y \, dA$, where D is the top half of the disk with center the origin and radius 5
- 8. $\iint_{\mathbb{R}} (2x y) dA$, where R is the region in the first quadrant enclosed by the circle $x^2 + y^2 = 4$ and the lines x = 0 and
- 9. $\iint_R \sin(x^2 + y^2) dA$, where R is the region in the first quadrant between the circles with center the origin and radii 1 and 3
- **10.** $\iint_R \frac{y^2}{x^2 + y^2} dA$, where R is the region that lies between the circles $x^2 + y^2 = a^2$ and $x^2 + y^2 = b^2$ with 0 < a < b
- 11. $\iint_D e^{-x^2-y^2} dA$, where D is the region bounded by the semicircle $x = \sqrt{4 - y^2}$ and the y-axis
- 12. $\iint_D \cos \sqrt{x^2 + y^2} dA$, where D is the disk with center the origin and radius 2
- 13. $\iint_{\mathbb{R}} \arctan(y/x) dA$, where $\mathbb{R} = \{(x, y) \mid 1 \le x^2 + y^2 \le 4, \ 0 \le y \le x\}$

14. $\iint_D x \, dA$, where D is the region in the first quadrant that lies between the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 2x$

15-18 Use a double integral to find the area of the region.

15. One loop of the rose $r = \cos 3\theta$

- **16.** The region enclosed by both of the cardioids $r = 1 + \cos \theta$ and $r = 1 - \cos \theta$
- 17. The region inside the circle $(x 1)^2 + y^2 = 1$ and outside the circle $x^2 + y^2 = 1$
- **18.** The region inside the cardioid $r = 1 + \cos \theta$ and outside the circle $r = 3 \cos \theta$

19-27 Use polar coordinates to find the volume of the given solid.

- **19.** Under the cone $z = \sqrt{x^2 + y^2}$ and above the disk $x^2 + y^2 \le 4$
- **20.** Below the paraboloid $z = 18 2x^2 2y^2$ and above the
- 21. Enclosed by the hyperboloid $-x^2 y^2 + z^2 = 1$ and the
- **22.** Inside the sphere $x^2 + y^2 + z^2 = 16$ and outside the cylinder $x^2 + y^2 = 4$
- 23. A sphere of radius a
- **24.** Bounded by the paraboloid $z = 1 + 2x^2 + 2y^2$ and the plane z = 7 in the first octant
 - **25.** Above the cone $z = \sqrt{x^2 + y^2}$ and below the sphere $x^2 + y^2 + z^2 = 1$
- **26.** Bounded by the paraboloids $z = 3x^2 + 3y^2$ and $z = 4 x^2 y^2$
- 27. Inside both the cylinder $x^2 + y^2 = 4$ and the ellipsoid $4x^2 + 4y^2 + z^2 = 64$

28. (a) A cylindrical drill with radius r₁ is used to bore a hole through the center of a sphere of radius r_2 . Find the volume of the ring-shaped solid that remains.

(b) Express the volume in part (a) in terms of the height h of the ring. Notice that the volume depends only on h, not on r_1 or r_2 .

29-32 Evaluate the iterated integral by converting to polar

29.
$$\int_{-3}^{3} \int_{0}^{\sqrt{y-x^2}} \sin(x^2 + y^2) \, dy \, dx$$
 30.
$$\int_{0}^{a} \int_{-\sqrt{a^2-y^2}}^{0} x^2 y \, dx \, dy$$

30.
$$\int_0^a \int_{-\sqrt{a^2-v^2}}^0 x^2 y \, dx \, dy$$

31.
$$\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) dx dy$$

31.
$$\int_0^1 \int_y^{\sqrt{2-y^2}} (x+y) \, dx \, dy$$
 32.
$$\int_0^2 \int_0^{\sqrt{2x-x^2}} \sqrt{x^2+y^2} \, dy \, dx$$

1. Homework Hints available at stewartcalculus.com